Possible Effects of Climate Change on Weeds in Agriculture

Murat KARACA1,*, Sevda Serpil DURSUN1
1Selçuk University, Faculty of Agriculture, Department of Plant Protection, Konya, Turkey

ARTICLE INFO

Article history:
Received date: 25.10.2019
Accepted date: 01.04.2020

Edited by:
Duran YAVUZ; Selçuk University, Turkey

Reviewed by:
İlhan ÜREMIŞ; Hatay Mustafa Kemal University, Turkey
Süleyman Gürdal TÜRKSEVEN; Ege University, Turkey

Keywords:
Climate Change
Agriculture
Weeds

ABSTRACT

In recent years, activities such as rapid population growth, industrialization, urbanization and unconscious consumption of natural sources, have many negative effects on natural balance. As a result of these negativities, environmental problems arise. Global warming is one of the environmental problems faced today. Global warming can be defined as, the process of overheating of the Earth more than it should be due to greenhouse gases, such as H2O (water vapor), CO2 (carbon dioxide) and CH4 (methane), slight prevention of sunlight reflecting from the Earth to the space. It is inevitable that, the rise of CO2 concentration due to the global warming and the changes in the precipitation regime and amount because of the heat will affect plants as a whole. As a matter of fact, different researchers presented that the climate change and increase in CO2 concentration cause alteration in plant growth, the rise in carbon dioxide affect the progress of cultivated plants in a positive way whereas, the rise in the heat and ozone affect the progress in a negative way. As a result of global warming, it can be thought that increasing CO2 amount will increase crop production in general. However, the existence of weeds, which cause serious losses in productivity and quality, refute this opinion. The genetic variability of the weeds, which are constantly competing against cultivated plants in terms of light and place, is quite rich when compared with cultivated plants. Therefore, they can adapt to any changes that occur in the environment. Ultimately, cultivated plants would be affected more by the differences caused by global warming. Moreover, as a result of climate change, the decrease in the event of herbicide activity, an effective weapon against the weeds, will make weeds much bigger matter.

1. Introduction

In recent years, rapid population growth, industrialization, urbanization and unconscious use of natural resources cause environmental problems (Yıldız et al 2000). Global warming is one of the environmental problems faced today.

It can be defined greenhouse gases known as H2O (water vapor), CO2 (carbon dioxide) and CH4 (methane), a variety of gases, the sun's rays reflected from the Earth after partially blocking the exit out of the atmosphere as a result of further warming of the Earth (Lynas 2008).

“Greenhouse gases” are gases of both natural and human origin that absorb and emit infrared radiation in the atmosphere (Fig. 1).

* Corresponding author email: mkaraca@selcuk.edu.tr
According to the Intergovernmental Panel on Climate Change (IPCC), atmospheric CO$_2$ concentration increased by 31% over the last 250 years. The average global temperature has also increased by 0.6°C in the last hundred years (IPCC 2002).

2. Turkey’s Status

Turkey has started to experience its driest seasons in recent years. It is observed that deviations in the amount and distribution of rainfall seen throughout our country have negative consequences in underground and above ground water reserves and that these deviations have continuity (Fig. 5; Fig. 6) (Türkeş 2001).
3. Impact of Climate Change on Weeds

It has been shown that climate change and the increasing amount of CO₂ have a positive effect on the growth of crop plants in general, while increasing temperature and ozone have a negative effect (Ainsworth & Long 2005; Morgan et al 2006; Ainsworth 2008).

C₃ plants are temperate climate plants that need high CO₂ concentration, low temperature, and low ability to use light. C₄ plants need low CO₂ concentration, high temperature and lower water. They are resistant to seasonal drought and have a high ability to use light and are predicted to be adversely affected by the increased CO₂ rate (Doğan & Tüzer 2011).

Studies have shown that C₃ plants respond better to the increased amount of CO₂ than C₄ plants (Heyman & Sadras 2010). In general, doubling the concentration of CO₂ increases the biomass in C₃ plants by about 40%, while in C₄ plants this rate remains at 11% (Kimbrell 1983). However, the level of increase varies greatly depending on the type of plant. As a result of the increased in CO₂ concentration, growth in 27 herbaceous C₃ plants increased by 79-272% and in 11 different C₄ plants increased by 56-250% (Patterson & Flint 1990).

Since plants other than sorghum, maize and sugar-cane etc. are C₃ plants, which are of global economic importance, it can be thought that climate change will give advantages to cultured plants and weeds will not pose a major problem. Furthermore, the fact that the important weeds that cause problems on earth are C₄ plants in general supports this judgment.

For example, only 4 of the 18 most important weeds in the world are reported to be C₃ plants (Holm et al 1977). However, one thing that is overlooked is that the number of species found in agricultural areas is far above that. It is the fact that these weeds, which under favorable conditions cause second degree damage, can replace others. Weed survey studies conducted in different cultivated plants in the world clearly reveal this situation (Ulug et al 1993; Özer et al 2001).

Each cultured plant has its own unique weed and they are generally adapted to the production process of that cultured plant (Özer et al 2001). Wild oats, common Lamb's quarters, and barnyard grass are examples of wheat problems. In addition, the positive effect of the increase in the amount of CO₂ when compared with the same photosynthesis method of cultured plants and weeds is in favor of weeds.

According to Patterson (1995), 2 times the amount of CO₂ increases the total weight of weeds by an average of 130% in C₃ weeds and 115% in C₄ weeds. Both C₄ and C₃ weeds will continue to pose problems in plantation as they adapt rapidly to new environmental conditions created by global warming. Even if the effectiveness of C₄ weeds decreases in agricultural areas due to increased temperature and CO₂, it is likely that C₃ weeds will be replaced immediately.

3.1. Effect on Weed-Crop Competition

Depending on the type of crop plant and weeds, competition is sometimes expected to change in favor
of cultured plant and sometimes weeds (Patterson, 1995). However, high CO₂ conditions are generally expected to make C₃ weeds more competitive (Ziska 2000).

Indeed, one study found that the ability of soybeans to respond positively to increased carbon dioxide is reduced by weeds. In competition with Chenopodium album, a C₃ weed, the decline in soybean yield was highest. However, when it competes with a C₄ plant, the redroot pigweed (Amaranthus retroflexus), the intensity of the competition was lower.

Figure 8
Amaranthus retroflexus (Anonymous 2019d)

3.2. Effect on Perennial Weeds and Herbicides

The control of perennial weeds is extremely difficult as it depends on the elimination of vegetative reproductive organs. For success it often has to be applied together with the use of the herbicide with mechanical control.

However, due to the increase in photosynthesis products, the increase is expected in vegetative reproductive organs such as rhizome, stolon, and root. While this increase will lead to an increase in the vegetative reproductive capacity of perennial weeds, it will also make it more difficult to control.

Figure 9
Some perannual weeds
a) Sorghum halepense, b) Cirsium arvense, c) Acropodium repens, d) Elymus repens, e) Alhagi pseudalhagi, f) Convolvulus arvensis (Anonymous 2019e)

In addition, differences in the structure of weeds leaves and reasons such as the accumulation of starch in the leaves of C₃ plants lead to a decrease in the effect of herbicides used (Figure 10). Therefore, climate changes probably suggest that perennial weeds, especially invasive species, will increase in agricultural areas and become a bigger problem (Ziska & Teasdale 2000; Ziska et al 2004; Ziska 2008).

Figure 10
Effect of glyphosate on Cirsium arvense depending on the amount of carbon dioxide (Ziska 2010)

3.3. Impact of Climate Change on Invasive Plants

Studies under controlled conditions suggest that the response of invasive plants to climate change, especially CO₂ increases, is generally higher than that of local species (Willis et al 2010).

The increase in temperature is also thought to trigger the growth of invasive plants and thus cause them to complete their life span in a shorter time than normal. Thus, it is estimated that plants may show higher fertility and increase their spread (Burke & Grime 1996; Blicker et al 2002; Kolb et al 2002; Morris et al 2002; Gerlach & Rice 2003; Leger & Rice 2003).

Figure 11
Invasive parasite weed Cuscuta campestris Yunck. (Tamer 2012)

4. Weed Control Due to Climate Change

Herbicides are one of the most effective weapons in weed control. Reduced herbicide activity due to climate change will make weeds a much bigger problem (Ziska 1998; 2008; Ziska & Goins 2006). In addition, environmental stress conditions affecting cultured plants will also make cultured plants more susceptible to disease, pest and weed competition (Patterson 1995). This puts the management of weeds, which are a problem in agricultural fields due to climate change, in a much more important position. Indeed, yield losses from weeds are expected to increase.

5. Example Studies of Importance

Elymus repens (quack grass) growth, photosynthetic activity and tolerance observed under conditions of increased CO₂ glyphosate the chemical management in seeking to it was concluded that it would be difficult perennial weeds (Ziska & Teasdale 2000).

Ziska and Faulkner (2004), investigated the effectiveness of normal and augmented CO₂ conditions on the growth, biomaterial and glyphosate susceptibility of village references: Canada thistle (Cirsium arvense). According to the results, it is stated that in the future, the chemical control of Canada thistle and other perennial weeds will be difficult under high CO₂ conditions.

Göncü (2013), in his study corn of different CO₂ ratios (Zea mays L.), the problem in Sorghum halepense, Echinochloa crus-galli, Amaranthus blitoides and Solanum nigrum’s growth, competition and herbicide sensitivity was aimed to determine. The high CO₂ ratio positively affected the output of some weeds. In normal CO₂ conditions weeds reduced maize growth, while in high CO₂ conditions there was no decrease in growth. It has been determined that the growth parameters of weeds reach higher values in high CO₂ and competitive conditions. It has also been determined that generally high CO₂ conditions can cause a decrease in herbicide activity.

Meşe (2014)’s research aimed to determine the growth, competition and herbicide susceptibility of weeds of Avena sterilis, Phalaris minor, Galium tricornutum, Sinapis arvensis, which are problems in wheat of different CO₂ ratios. Weed competition has caused a decrease in wheat growth in different CO₂ conditions. Weed growth was not affected by CO₂ in the non-competitive environment, while reductions were seen in the competitive environment. It has also been observed that herbicide sensitivity is lower in narrow-leaved weeds and increased in broad-leaved weeds.

Over the past few decades, significant transformations have been induced by changing climate in the weed flora of agroecosystems, worldwide, allowing...
thermophile, late-emerging weeds, and some opportunistic weeds to become more abundant in some cropping systems. Increasing CO₂, as the most important greenhouse gas, affects plants by changing the species distribution, alteration in reproduction timing and length of growing seasons. Climate change directly influences arable weeds through raising the temperature and changing the precipitation pattern (Peters et al 2014).

Jabran and Doğan (2015) examined the effect of normal and 2 times dose CO₂ ratio on the growth of *Lolium perenne* and *Medicago sativa*. As a result of the trial, L. with increased CO₂ application positive relationship between age-dry weight and chlorophyll content of perenne plants was determined. *M. sativa*, however, the overall CO₂ increase was not affected by age and dry weight.

Figure 14
a) *Medicago sativa*, b) *Lolium perenne* (Anonymous, 2019b)

Jabran et al (2015) evaluated the effect of ambient (current level of CO₂ in the atmosphere) and simulated (double of normal CO₂) CO₂ levels on the invasive weed species *Potentilla recta* L. The invasive weed species was grown under normal (~400 ppm) and elevated (~800-850 ppm) CO₂ in a controlled glasshouse. The data about fresh weight, dry weight, number of leaves, plant height and chlorophyll index were recorded. The studies indicated that the elevated CO₂ levels increased the growth of *P. recta*. The high levels of CO₂ increased the fresh weight, dry weight, plant height and number of leaves of *P. recta* compared with ambient CO₂ while chlorophyll index was not affected.

Tursun et al (2018) conducted a study to determine the reactions of some weeds (*Amaranthus retroflexus, Portulaca oleracea, Physalis angulata, Sorghum halepense*) to different CO₂ concentrations and different temperatures under greenhouse conditions. As a result of the study, parallel to the increase in CO₂, even if there is some positive growth in plants, they stated that the increase in environmental temperature would negatively affect crops and agriculture.

6. Conclusion and Recommendations

Studies have shown that the increased CO₂ concentration associated with climate change can have positive reactions to the growth of cultivated plants such as corn, cotton, soybean, wheat, and rice (Alberto et al 1996; Ziska & Bunce 1997; Reddy et al 1999; Ziska 2000; Ziska & Goins 2006; Patel et al 2008; Zhu et al 2008; Erbs et al 2009). However, there are also findings that reactions to changes in weeds may be higher than in cultured plants (Ziska & Bunce, 1993; Ziska & Bunce 1997; Ziska 2002; Pandey et al 2003). Therefore, it is a fact that changing conditions will affect weed-crop competition. Changes in the methods of management weeds will be inevitable.

Determination of the adaptation potentials of weeds to climate changes should be one of the priority objectives of weeds science (Neve et al 2009). However, it has not yet been fully revealed how factors such as temperature, amount of CO₂, light and water in field conditions affect weed growth and the effectiveness of herbicides. Therefore, detailed studies on this subject are needed to reach a final judgment.

It is known that climate change can significantly affect the growth, reproduction, distribution, competitiveness, etc. of invasive plants. It also suggests that the species in question will increase, especially in agricultural areas, and become a bigger problem (Ziska & Teasdale 2000; Ziska et al 2004; Ziska 2008). Therefore, invasive plants need to be dealt with again and more carefully in the context of the possible impacts of climate change.

7. References


Anonymous (2019b).

Anonymous (2019c).

https://www.flickr.com/photos/dougcwaylett/2714444941
m-halpense/http://swbiodiversity.org/
wikipedia.org/wiki/Elymus_repens
https://www.scoloradowildflowers.com/White%20Enlarg
ed%20Photo%20Pages/convvolulus%20arvensis.htm
20.09.2019
kg.html 22.09.2019
Anonymous (2019g). https://www.devonpondplants.co.uk/product/cyperus-
tellows/20.09.2019
https://www.emisyon.net/varolaynaklar/ 20.09.2019
20.09.2019
Anonymous (2019j). https://www.devonpondplants.co.uk/product/cyperus-
tellows/ 20.09.2019


Ziska LH, Teasdale JR (2000). Sustained growth and increased tolerance to glyphosate observed in a C-3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology, 27(2), 159-166


Ziska LH (2008). Climate Change and Invasive Weeds. Powerpoint sunu,