Investigation of Insulin-Like Growth Factor Binding Protein 3 (IGFBP-3) Polymorphism in Anatolian Black and Holstein Friesian Cattle Breeds*

Marwan FADHIL1,*, Ibrahim AYTEKIN3, Uğur ZÜLKADIR1
1Selçuk University, Faculty of Agriculture, Department of Animal Science, Konya, Turkey

ARTICLE INFO

Article history:
Received date: 28.03.2020
Accepted date: 16.05.2020

Edited by:
Duran YAVUZ; Selçuk University, Turkey

Reviewed by:
Yasemin GEDİK; Ankara University, Turkey
Taki KARSLI; Akdeniz University, Turkey

Keywords:
Anatolian Black
Holstein Friesian
IGFBP-3
PCR-RFLP
BsuRI
Polymorphism

1. Introduction

Improvement of livestock has focused on the selective breeding of individuals with superior phenotypes. With the development of increasingly advanced statistical methods that maximize selection for genetic gain, this simple approach has been extremely successful in increasing the quantity of agricultural output (Williams, 2005). Milk production is a quantitative trait which is affected by many environmental factors and controlled by many genes (Zhang et al., 2006). Several candidate genes have been identified that affect the productivity of cattle (Fadhil and Zülkadir, 2017; Aytekin and Boztepe, 2013). One of these genes is IGFBP-3. IGFBP-3 is a family of proteins that are a fundamental part of the Insulin-like Growth Factors (IGFs) system (Sudhakar, 2009) and plays a key role in regulating the biological activities of IGFs (Zhang et al., 2006). The IGFBP-3 gene is mapped on chromosome 4 in bovine genome (Priyadi, 2017). The mRNA of IGFBP-3 gene is length 8.407 bp containing 4 non-coding introns and 5 coding exons (Othman, 2014). The polymorphism of IGFBP-3 gene was identified for the first time by Maciulla (1997). Zhang et al. (2006), reported that IGFBP-3 gene affects milk yield at 305 days and protein percentage in Chinese Holstein cattle breed. In addition, it has been reported that IGFBP-3 gene affects serum IgG levels (Choudhary et al. 2007). According to previous studies the IGFBP-3 gene can be used as candidate gene for milk and growth traits. Today, restriction enzyme polymorphisms are commonly used for different candidate genes in many livestock species such as cattle (Saleh et al. 2019; Karshl 2019), goat (Demir et al. 2020), sheep (Ali et al. 2009; Qureshi et al. 2014) and chicken (Karshl et al. 2017).

The aim of this study was to determine the Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3) gene polymorphism by using BsuRI (HaeIII) restriction enzyme in both Anatolian Black and Holstein Friesian cattle breeds.

2. Materials and Methods

* Corresponding author email: mervan.bayraktar@gmail.com
* Short communication
In this study, a total of 50 (AB) and 50 (HF) cattle breeds were used for IGFBP-3 gene. Disodium EDTA containing tubes were used to prevent coagulation of blood during collection of samples. Then, blood samples storage was carried out at -20 °C until DNA extraction procedures. Blood samples were taken from the Tail Vein of animals. Genomic DNA was extracted from whole blood using the Quick Gene DNA whole blood kit (DB-S) (KURABO, Japan). 651 bp length of IGFBP-3 gene region was amplified with forward (5’-CCAAGCGTGAAGACAAATAC-3’) and reverse (5’-AGGGAGGATAGGAGCAAGTT-3’) primers reported by Maciulla et al. (1997). The PCR was done in a reaction volume of 10 µL according with some modifications. The reaction consists of 5µL of 2× Dream Taq Green PCR Master Mix (Thermo Scientific, USA), 0.30µL primer each primer forward and reverse (10 pmol) (Macrogen, Turkey) and 3.4µL ddH2O which finally added to 1 µL genomic DNA. The cycling protocol followed with initial denaturation at 94 °C for 5 min followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 60 °C for 1 min, extension at 72 °C for 1 min with a final extension at 72 °C for 5 min. The PCR product of each sample (5 µL) and 100 bp DNA ladder (Vivantis, Malaysia) were loaded in 2% (w/v) agarose gels in 0.5X Tris-Borate-EDTA (TBE) buffer staining using ethidium bromide. The electrophoresis was carried out for 45 min at 100 V. The agarose gel electrophoresis was examined on an UV transilluminator and bands were visualized and photographed. The PCR products of IGFBP-3 gene were cleaved by fast digest; amplified fragments were digested with BsuRI (Thermo Scientific, #FD0154) at 37°C. The reaction volume was 15 µL consisted of 5 µL PCR product, 8.5 µL ddH2O, 1 µL 10X buffer and 0.5 µL restriction enzyme. The polymorphism of the cleaved fragments recognition was carried out by %2 agarose gel electrophoresis then the digested PCR products was obviously envisioned under UV light and scored in a gel documentation system.

3. Results and Discussion

A total of three genotypes including AA (199 and 164 bp), BB (215 and 164 bp) and AB (215, 199 and 164) (Figure 1 and 2) were detected by digestion of 651 bp of IGFBP-3 gene region with BsuRI restriction enzyme. Additionally, 164 and 154 bp fragments were observed on agarose gel as a thick band for all genotypes. The allele and genotype frequencies of each breed are given in Table 1. The results showed differences between the two breeds where the Anatolian black cattle showed one genotype while the Holstein Friesian showed three genotypes. This means that the AB cattle breeds maintains its genetic structure compared to Holstein Friesian breeds. The reason may be that AB is not subject to migration, gene flow, admix-
Table 1
Allele and genotype frequencies at IGFBP-3 gene in two cattle breeds

<table>
<thead>
<tr>
<th>Breed</th>
<th>N</th>
<th>Genotype frequencies</th>
<th>Allele frequencies</th>
<th>χ² and P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>50</td>
<td>1.00 0.00 0.00</td>
<td>0.00 1.00 0.00</td>
<td>-</td>
</tr>
<tr>
<td>HF</td>
<td>50</td>
<td>0.32 0.48 0.20</td>
<td>0.56 0.44 0.03</td>
<td>0.03 (P>0.05)</td>
</tr>
</tbody>
</table>

AB: Anatolian Black; HF: Holstein Friesian; P>0.05: in Hardy-Weinberg equilibrium

Association analysis results showed that a significant effect (P<0.05) of genotypes on birth weight and body weight (weight at 12, 18 and 24 months of age) of the animals. Animals with AB genotype showed higher birth weight and body weight than the animals with AA genotype. Zhang et al., (2006) investigated association between IGFBP-3 gene polymorphisms and milk traits in Chinese Holstein. It was reported A and B allele frequencies for IGFBP-3 gene were 0.574 and 0.426, respectively in Chinese Holstein population. The genotypes of animals at IGFBP-3 locus significantly affected 305-day standard milk yield, protein percentage and somatic cell score. The B allele increased the milk yield, while the AB genotype had a higher protein percentage than AA and BB. Othman et al. (2015) determined the genetic polymorphism of IGFBP-3 gene in Egyptian cattle breeds. The restriction patterns of IGFBP-3/HaeIII showed that forty-six examined animals were genotyped as AA, CC and AC with frequencies of 0.21, 0.21 and 0.56 respectively.

The previous studies mentioned above imply that IGFBP-3 polymorphism may be used for growth, development, body weight, milk yield, reproduction, immunity, metabolism, and energy balance in cattle. Hence, the present study provides baseline data for future genetic assessments of these populations. The results of the present study revealed that IGFBP-3 polymorphism may be used to improve meat properties and growth characteristics in Holstein Friesian in the future, while it cannot be used for Anatolian Black due to deficiency of diversity. This study is also important in determining the status of these two breeds raised in Turkey and to shed light on those who will work on this area in the future.

4. Acknowledgements

We thank BAP Coordinatorship of Selçuk University for supporting this study with no. 17401120 project. Authors have an equal contribution rate in the research. There is no conflict of interest.

5. References

