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 The fact that arable land is not increasing in proportion to the ever-increasing 

population will increase the need for food in the coming years. For this reason, 

it is necessary to increase the yield of crops to make optimum use of arable land. 

One of the most important reasons for the decrease in yield and quality of crops 

is weeds. Herbicides are generally preferred for weed management. Due to 

deficiencies in herbicide application methods, only 0.015-6% of herbicides reach 

their target. The use of herbicides, which is an important part of the agricultural 

system, is an issue that needs to be emphasized, considering the risk of residue 

and environmental damage. In parallel with the rapid development of electronic 

and computer technologies, artificial intelligence applications have had the 

opportunity to develop. In this context, the use of artificial intelligence for plant 

detection in the subsystems of herbicide application machines will contribute to 

the development of precision agriculture techniques. In this study, the plant 

detection performances of single-stage and two-stage Convolutional Neural 

Network (CNN)-based deep learning (DL) models are evaluated. In this context, 

a dataset was created by taking images of Zea mays, Rhaponticum repens (L.) 

Hidalgo, and Chenopodium album L. plants in agricultural lands in Konya. With 

this dataset, the training of the models was carried out by the transfer learning 

method. The evaluation metrics of the trained models were calculated using the 

error matrix. In addition, training time and prediction time were used as 

quantitative metrics in the evaluation of the models. The plant detection 

performance, training time, and prediction time of the models were 85%, 8 h, 

1.21 s for SSD MobileNet v2 and 99%, 22 h, 2.32 s for Faster R-CNN Inception 

v2, respectively. According to these results, Faster R-CNN Inception v2 is 

outperform in terms of accuracy. However, in cases where training time and 

prediction time are important, the SSD MobileNet v2 model can be trained with 

more data to increase its accuracy.   
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1. Intrоduсtiоn 

The most preferred method for weed management is 

the use of herbicides (Ali et al., 2015).  It is also 

observed that herbicides are used in more than 90% of 

the total area planted for maize in European Union 

countries (Vasileiadis et al., 2015). Although weeds do 

not cover the entire soil surface, the most common use 

of herbicides is to apply them over the entire area. It is 

obvious that if herbicide use is not optimized, various 

environmental and economic risks are evident (Pérez-

Ortiz et al., 2016; Zheng et al., 2017). Traditional 

methods of weed control are limited in terms of time, 

cost, and errors. These limitations can be overcome with 
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the use of computer vision systems. In this respect, the 

use of herbicides in weed control can achieve better 

results if they target only weeds and are applied 

selectively according to a specific weed class (dos 

Santos Ferreira et al., 2017). Variable rate herbicide 

application is also recommended when it comes to 

herbicide use in precision agriculture practices (Asad et 

al., 2020; Bàrberi, 2002). The most important step to 

realizing weed control with an automated system within 

the framework of precision agriculture is to detect weeds 

correctly (Liu and Bruch, 2020). 

In this study, the performance evaluation of Single 

Shot Multibox Detector (SSD), a two-stage detector that 
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can be used in the subsystems of robotic machines for 

automatic weed control, and Faster R-CNN, a two-stage 

detector, was carried out with a dataset created with 

plant images taken from Konya plain agricultural lands. 

The study is organized as follows. The second 

section of the paper describes the two-stage and single-

stage detectors. The third section describes the dataset, 

object labeling, model training, performance metrics, 

and experimental results. In the last section, the results 

are evaluated, and future work is presented. 

2. Materials and Methods 

State-of-the-art DL algorithms in object detection 

generally consist of two main parts: object detectors and 

backbone architectures. In an object detection network, 

backbone architectures extract features from input 

images. The quality of the extracted features directly 

affects the performance of the algorithm. Object 

detectors, on the other hand, perform classification 

based on the extracted features and identify bounding 

boxes. Object detectors can be categorized into two 

main categories as two-stage and one-stage according to 

the object detection method. In the first stage, two-stage 

detectors use a region proposal network (RPN) to 

identify regions that are likely to contain objects. In the 

second stage, classification and object location are 

determined. In single-stage detectors, these processes 

are performed at one time (Zaidi et al., 2022). This 

provides an advantage in terms of speed (Jiao et al., 

2019). The basic architectures of two-stage and single-

stage detectors are shown in Figure 1. 

 

Figure 1 

Basic structure of detectors (a) Two-stage detectors, (b) Single-stage detectors (Jiao et al., 2019) 

2.1. Faster R-CNN Inception v2 

In the CNN algorithm, creating boxes of different 

sizes for objects of different sizes and detecting the 

region proposal each time by shifting the boxes on the 

image would require too much computer power and too 

much processing. For this reason, different R-CNN 

algorithms have been developed. Within CNN 

algorithms, the region suggestion that is likely to be an 

object in an image is used in R-CNN algorithms. 

In R-CNN, region proposals are created by the 

selective search in which the same class value is 

assigned to the pixels in each closed area separated from 

each other in shape or color in an image that is likely to 

contain objects in the images to be region proposals. The 

marked regions are brought to the same size and passed 

through the CNN one by one to check whether there is 

an object in that region and if so, the detected object is 

assigned to a class. The region boundaries are defined 

by linear regression based on the relationship between 

the dependent variable and independent variables, and 

the classification is based on a supervised learning 

method, namely the Support Vector Machine (SVM), 

which is based on a model created using known data 

with known results, and is based on the determination of 

decision boundaries or, in other words, hyperplanes to 

optimally separate the data belonging to the classes from 

each other (Girshick et al., 2014). The training and 

prediction times of R-CNN are very long as all the 

region proposals are passed through the CNN one by 

one. 

Fast R-CNN, which has the same structure as R-

CNN but uses a different technique to speed it up, has 

been developed. In Fast R-CNN, the entire image is 

directly passed through the CNN without identifying 

any region in the image and a high-resolution feature 

map is extracted. From this feature map, a region 

proposal is generated by the selective search. Again, as 

in R-CNN, the marked regions are resized to the same 

size and given directly to the Fully Connected Layer 

(FCL) this time. In this way, each region is not passed 

through the neural network separately as in R-CNN. In 

this case, excessive time loss is avoided. Classification 

is then performed, and the boundaries of the detected 

object are determined. The boundaries are determined 

by linear regression, and the classification is performed 

using the SoftMax function, which is used for multiple 

classification problems and produces outputs between 0 

and 1, indicating the probability that each given input 

belongs to a class (Girshick et al., 2015). Fast R-CNN 

works quite fast in the training phase. However, it 

spends most of the time in the testing phase making 

region proposals. 

Faster R-CNN was developed to reduce the time 

spent on region recommendation, which is the 

disadvantage of Fast R-CNN and to make the model 

work even faster. Faster R-CNN (Ren et al., 2015) gains 

speed by making the region suggestion within the 

network instead of getting region suggestions with 

Selective Search. After applying CNN to the input 

image, the feature map is extracted. Then, unlike Fast R-

CNN, it makes region proposals through RPN. After 

RPN identifies the regions, the rest of the operations are 
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the same as Fast R-CNN. After the identified regions are 

resized, they are given to the FCL, and classification is 

performed. In this case, it is necessary to train both the 

RPN and the CNN.   

The RPN has two tasks: to decide whether there are 

objects in each proposal region and to determine the box 

size of proposals. CNN, on the other hand, has two tasks: 

to perform classification in the region and determine the 

boundaries of the object after classification. 

Inception v2 (Szegedy et al. 2016) is one of the 

widely used and highly accurate CNN architectures. 

This architecture is designed to avoid the complexity of 

CNNs by reducing the depth of the network. 

2.2. SSD MobileNet v2 

It was mentioned above that in the faster R-CNN, 

regions in the image that are likely to be objects are first 

identified and then classified using FCL. In SSD, on the 

other hand, these two are done at one time. An image is 

taken as input and passed through the CNN to obtain 

feature maps of different sizes. In all feature maps, 

bounding rectangles are obtained with the help of a 3x3 

convolutional filter. For each rectangle, both boundaries 

and classifications are determined simultaneously. Since 

these rectangles are present in every activation map, 

they can recognize both small objects and large objects. 

During training, the correct boundaries are compared 

with the predicted boundaries. The best rectangles 

predicted above 50% are labeled as positive. 

MobileNet v2 (Sandler et al., 2018) is designed to 

improve computational cost and accuracy by adding 

jump links between the convolution layers in MobileNet 

v1 (Howard et al., 2017), a lightweight network 

backbone that uses in-depth convolutions developed for 

embedded and mobile vision applications. 

2.3. Experimental Design and Statistical Analysis 

2.3.1. Dataset 

A data set was created from the images obtained by 

using mobile phones and cameras in Konya and its 

surrounding districts. A total of 1500 images were 

selected from this data set by taking 500 images each 

from the images of Zea mays, Rhaponticum repens (L.) 

Hidalgo, and Chenopodium album L. plants, which are 

given in Table 1 below and whose sample images are 

shown in Figure 2. These selected images were resized 

to 640 pixels on the short side so that the aspect ratios 

would not be distorted for fast training. Of the total 500 

images of each type, 80% were used for training and 

20% for testing. Thus, 1200 images were used for 

training and 300 images were used for testing. 

Table 1 

Created dataset 

Species Scientific Names 
EPPO 

Code 

Training Data 
Total 

Train (%80) Validation (%20) 

1 Zea Mays ZEAMX 400 100 

1500 2 Chenopodium album L. CHEAL 400 100 

3 Rhaponticum repens (L.) Hidalgo CENRE 400 100 

 

Figure 2 

Example dataset images; (a) Zea Mays, (b) Rhaponticum 

repens (L.) Hidalgo, (c) Chenopodium album L. 

2.3.2. Labeling 

For labeling processes, xml files were created by 

labeling all images using the open-source LabelImage 

(Tzutalin, 2015) tool, an example of which is shown in 

Figure 3. 

 

Figure 3 

Example labeling for Zea Mays 

2.3.3. Training Processes 

Since building and training, a model from scratch 

would require a lot of time and powerful computers, two 

models were created using transfer learning, a method in 

which a pre-trained model for one task is redesigned for 

a second task. Tensorflow, an open-source DL library, 

was used in both models. The preferred models were 

pre-trained with the Tensorflow Object Detection API 

(Tensorflow, 2021) using the Common Objects in 

Context (COCO) dataset consisting of 91 object types 
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and 2.5 million labeled data. We retrained these models 

by transfer learning using our dataset and object 

detection was performed. Thus, we were able to observe 

the successful results by training on a low-equipped 

computer with little data. For transfer learning using pre-

trained models:  

-   The coefficients of the convolution layers were fixed,  

- The number of output neurons activated by the 

activation function in the output layer was changed to 

match the desired number of classes,  

- The network coefficients of the FCL between the 

output layer and the convolution layers were retrained 

with new data with random initial values. 

The training times of the Faster R-CNN and SSD 

models trained for 10,000 steps using the generated 

dataset and Intel Core i5 3230M 2.60 GHz processor are 

shown in Table 2 and the training graphs are shown in 

Figure 4. 

Table 2 

Training times of the models 

Model  Training steps Training time (h) 

Faster R-CNN 

Inception v2 
10.000 22 

SSD MobileNet v2 10.000 8 

 

Figure 4 

Total loss graphs of the models according to iteration; 

(a) Faster R-CNN Inception v2, (b) SSD MobileNet v2 

2.3.4. Performance Metrics 

The confusion matrix allows us to find the 

correlation between model performance and test results. 

This matrix provides information about the correct or 

incorrect classification of positive and negative samples. 

Table 3 shows a two-class confusion matrix. 

Table 3 

Two-class confusion matrix 

 Prediction 

 Positive Negative 

Positive 

TP  

(True Positive) 

FN 

(False Negative) 

(Type-2 error) 

Negative 

FP  

(False Positive) 

(Type-1 error) 

TN 

(True Negative) 

The elements of the confusion matrix can be defined as 

follows: 

-  TP: The model correctly predicted the positive class 

as a positive class. 

-   FP: The model incorrectly predicted the negative class 

as a positive class. 

-   FN: The model incorrectly predicted the positive class 

as a negative class. 

-  TN: The model correctly predicted the negative class 

as a negative class. 

The three-class confusion matrix is given in Table 4 and 

the calculation of the matrix elements is given in Table 

5. 

Table 4 

Three-class confusion matrix 

  Prediction 

  C1 C2 C3 

Actual 

C1 T1 F12 F13 

C2 F21 T2 F23 

C3 F31 F32 T3 

Table 5 

TP, TN, FP, and FN calculation for a three-class confusion matrix 

Class TP TN FP FN 

C1 TP1=T1 TN1=T2+T3+F23+F32 FP1=F21+F31 FN1=F12+F13 

C2 TP2=T2 TN2=T1+T3+F13+F31 FP2=F12+F32 FN2=F21+F23 

C3 TP3=T3 TN3=T1+T2+F12+F21 FP3=F13+F23 FN3=F31+F32 

Statistical calculations can be made using the TP, FP, 

FN, and TN values in the confusion matrix (Martínez et 

al., 2022). In this study, the precision, recall, accuracy, 

and F1 score in Table 6 were determined as the 

performance evaluations of the models. 
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Table 6 

Performance metrics 

Metrics Formula Description 

Precision TP / (TP + FP) Accuracy rate of positive predictions 

Recall TP / (TP + FN) Accuracy rate of true positives 

Accuracy (TP + TN) / (TP + TN + FP + FN) Gives the success of the model 

F1 Score (2*TP) / (2*TP + FP + FN) 
It is the harmonic mean of the precision and recall values. 

Includes all error costs. 

3. Results 

Training and model tests were performed using the 

same computer. A total of 75 images were created by 

taking 25 images from each class that the model had not 

seen before, and the test data were created by resizing 

the short side of the image to 640 pixels so that the 

aspect ratio would not be distorted as it was done when 

creating the training and test data. 

For both Faster R-CNN Inception v2 and SSD 

MobileNet v2 models, the threshold value was chosen 

as 0.5. That is, 50% similarity and above is considered a 

correct prediction. Also, predictions above the bounding 

box threshold (IoU) of 0.5 were considered valid. The 

same test data was given as input to both models and the 

error matrix for the three classes in Table 7 was created. 

Table 7 

Confusion matrices of models 

 Prediction 

 Faster R-CNN Inception v2 SSD MobileNet v2 

 ZEAMX CHEAL CENRE ZEAMX CHEAL CENRE 

ZEAMX 25 0 0 23 2 0 

CHEAL 0 25 0 0 25 0 

CENRE 0 1 24 0 15 10 

The calculations in Table 5 were made and the 

statistical results in Table 8 were obtained by species. 

Table 8 

Performance of models by species 

Metrics 
Faster R-CNN Inception v2 SSD MobileNet v2 

ZEAMX CHEAL CENRE ZEAMX CHEAL CENRE 

Precision 1 0,96 1 1 0,6 1 

Recall 1 1 0,96 0,92 1 0,4 

Accuracy 1 0,99 0,99 0,97 0,77 0,8 

F1 Score 1 0,98 0,98 0,96 0,75 0,57 
 

The average of the results for the final evaluation is 

shown in Table 9. 

Table 9 

Overall performance of the models 

Metrics 
Faster R-CNN 

Inception v2 
SSD MobileNet v2 

Precision 0,99 0,87 

Recall 0,99 0,77 

Accuracy 0,99 0,85 

F1 Score 0,99 0,76 

Examples of the prediction results of the models on 

the test dataset images are given in Figure 5. 

 

 

 

 

Figure 5 

Predictions of the models; (a) Faster R-CNN Inception 

v2, (b) SSD MobileNet v2 
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Prediction time was also used as a quantitative 

metric in model evaluation. The prediction times of the 

models per image are given in Table 10. 

Table 10 

Prediction times of models 

Model 
Prediction time per 

image (sec) 

Faster R-CNN Inception 

v2 
2,32 

SSD MobileNet v2 1,21 

4. Discussion 

In this study, CNN-based single-stage and two-stage 

models that can be used in the subsystems of robotic 

herbicide application machines were evaluated. In this 

context, a data set was created by capturing images of 

Zea mays, and Rhaponticum repens (L.) Hidalgo, and 

Chenopodium album L. plants in Konya plain 

agricultural lands. Using this dataset, SSD MobileNet 

v2, a single-stage detector, and Faster R-CNN Inception 

v2, a two-stage detector, were trained. Models were 

given images they had not seen before, and performance 

evaluations were made. The accuracy and F1 score 

scores of the two-stage detector were found to be 0.99. 

The accuracy and F1 score of the single-stage detector 

were 0.85 and 0.76, respectively. In terms of time, the 

two-stage detector has a training time of 22 h and a 

prediction time of 2.32 s, while the single-stage detector 

has a training time of 8 h and a prediction time of 1.21 

s. According to these results, the performance of the 

two-stage detector is high. However, the single-stage 

detector performs better in terms of training and 

prediction time. The single-stage detector is therefore 

preferable where time is of the essence. In addition, 

training with more data and/or using data augmentation 

techniques can improve the performance of the single-

stage detector to the desired level. In this study, 

promising results were obtained by evaluating a dataset 

containing a few images. In our future studies, we plan 

to investigate high-performance methods for plant 

detection for precision agriculture applications. 
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