Reactions of Some Grapevine Rootstock Cuttings to Mutagenic Applications

Zeki Kara, Osman Doğan

Abstract


Grapevine (Vitis spp.) is one of the most important socio-economically important plants in the global scale, and the need for its breeding is increasing. In viticulture, mutation is more promising than crossbreeding in breeding new genotypes from natural genetic diversity. Polyploid plants outperform their diploid relatives in several respects. In this study, the efficacy of oryzalin and N2O mutagens in the induction of polyploidy was investigated by applying different doses and durations to the forced cuttings of 41B [Chasselas (Vitis vinifera L.) × Vitis berlandieri Planch)] and Fercal [(Vitis vinifera x Vitis berlandieri) × 333 EM] rootstocks. LD50 values of mutagen applications were determined, morphological and cytological effects were examined by macroscopic, microscopic, and cytological methods. Application time and dose increase of mutagens decreased LD50 values. As a result of mutagen applications, leaf thickness and chlorophyll content of the surviving plants increased. Applications increased stomatal sizes, decreased their density, increased chloroplast numbers, increased leaf thicknesses and partially SPAD values. It was determined that they were not polyploid in the confirmation test performed with flow cytometry (FC) analyses in 4 Fercal and 1 41B samples that were assumed to be mutant by stoma and chloroplast examinations. After that, it was thought that it would be appropriate to try vegetative material with actively dividing cells, such as nodal cuttings, in the studies of obtaining polyploid individuals on grapevine rootstocks

Keywords


41 B, Fercal, Breeding, Mutation, LD50, Polyploidy

Full Text:

PDF

References


Alston JM, Sambucci O (2019). Grapes in the world economy. In: The grape genome, Eds: Springer, p. 1-24.

Asoko N, Ruamrungsri S, Yoosumran V, Saetiew K (2020). Improvement of Dendranthemum grandi-flora cv. canter with colchicine in vitro. IJAT, 16 (2): 237-246.

Atichart P, Bunnag, S (2007). Polyploid induction in Dendrobium secundum (Bl.) Lindl. by in vitro tech-niques. Thai J. Agric. Sci., 40 (1-2): 91-95.

Bae S-J, Islam MM, Kim H-Y, Lim K-B (2020). Induc-tion of tetraploidy in watermelon with oryzalin treatments. Hortic. Sci. Technol., 38(3): 385-393.

Boger P, Sandmann G, (1998). Carotenoid biosynthesis inhibitor herbicides-mode of action and resistance mechanisms. Pestic Outlook, 9: 29-35.

Cabahug RAM, Ha MKTT, Lim K-B, Hwang Y-J (2020). LD50 determination and phenotypic eval-uation of three Echeveria varieties induced by chemical mutagens. Toxicol. Environ. Health Sci., 1-9.

Chakraborti S, Vijayan K, Roy B, Qadri S (1998). In vitro induction of tetraploidy in mulberry (Morus alba L.). Plant Cell Rep., 17 (10): 799-803.

Chen T, Huang L, Wang M, Huang Y, Zeng R, Wang X, Wang L, Wan S, Zhang L (2020). Ethyl methyl sulfonate-induced mutagenesis and its effects on peanut agronomic, Yield and Quality Traits. Agronomy, 10 (5): 655.

Cohen D, Yao J-L (1996). In vitro chromosome dou-bling of nine Zantedeschia cultivars. PCTOC, 47 (1): 43-49.

Compton ME, Gray D, Elmstrom G (1996). Identifica-tion of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica, 87 (3): 165-172.

Dayan FE, Watson SB (2011). Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic Biochem Physiol, 101 (3): 182-190.

de Carvalho JFRP, de Carvalho CRdP, Otoni WC (2005). In vitro induction of polyploidy in annatto (Bixa orellana). PCTOC, 80 (1): 69-75.

Dhooghe E, Denis S, Eeckhaut T, Reheul D, Van Labeke M-C (2009). In vitro induction of tetra-ploids in ornamental Ranunculus. Euphytica, 168 (1): 33-40.

Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011). Mitotic chromosome dou-bling of plant tissues in vitro. PCTOC, 104 (3): 359-373.

Dolezel J (1997). Application of flow cytometry for the study of plant genomes. J. Appl. Genet., 38 (3): 285-302.

Doyle J, Doyle J, Rauscher J, Brown A (2004). Evolu-tion of the perennial soybean polyploid complex (Glycine subgenus Glycine): a study of contrasts. Biol. J. Linn. Soc., 82 (4): 583-597.

Dunn BL, Lindstrom JT (2007). Oryzalin-induced chromosome doubling in Buddleja to facilitate in-terspecific hybridization. HortScience, 42 (6): 1326-1328.

Dwivedi N, Sikdar A, Dandin S, Sastry C, Jolly M (1986). Induced tetraploidy in mulberry I: Morpho-logical, anatomical and cytological investigations in cultivar RFS-135. Cytologia, 51 (2): 393-401.

Eichhorn K, Lorenz D (1977). Phenological develop-ment stages of the grapevine. Nachr.bl. Dtsch. Pflanzenschutzd., 29 (8): 119-120.

Eng W-H, Ho W-S (2019). Polyploidization using col-chicine in horticultural plants: a review. Sci. Hortic., 246: 604-617.

Faostat (2021). http://www.fao.org/faostat/en/#data/QCL/visualize, 27.09.2121,

Gu X, Yang A, Meng H, Zhang J (2005). In vitro induc-tion of tetraploid plants from diploid Zizyphus ju-juba Mill. cv. Zhanhua, Plant Cell Rep., 24 (11): 671-676.

Hasim A, Shamsiah A, Hussein S (2021). Induced mutations using gamma ray and multiplication of plantlet through micro cross section culture of ba-nana (Musa acuminata cv. Berangan). IOP Confer-ence Series: Earth and Environmental Science, 1-10.

Huy NP, Luan VQ, Tung HT, Hien VT, Ngan HTM, Duy PN, Nhut DT (2019). In vitro polyploid induc-tion of Paphiopedilum villosum using colchicine. Sci. Hortic., 252: 283-290.

Jain SM (2010). Mutagenesis in crop improvement under the climate change. Rom. Biotechnol. Lett., 15(2), 88-106.

Kara Z, Doğan O, Yazar K, Sabır A (2018a). 41 B asma anacına in vivo kolhisin uygulamalarının morfolojik ve sitolojik etkileri. Selcuk J Agr Food Sci, 32 (1): 8-13.

Kara Z, Sabır A, Yazar K, Doğan O, Şit MM (2018b). Effects of colchicine treatments on some grape rootstock and grape varieties at cotyledon stage. Selcuk J Agr Food Sci, 32 (3): 424-429.

Kara Z, Yazar K, Doğan O, Sabir A, Özer A (2018c). Induction of ploidy in some grapevine genotypes by N2O treatments. XXX International Horticultural Congress IHC2018: International Symposium on Viticulture: Primary Production and Processing 1276: 239-246.

Kara Z, Yazar K (2021). Effects of shoot tip colchicine applications on some grape cultivars. JAEFS, 5 (1): 78-84.

Keller M (2020). The Science of Grapevines: Anatomy and Physiology. Third Edition, Elsevier Academic Press, WA, United States, p. 541.

Kerdsuwan N, Te-chato S (2012). Effects of colchicine on survival rate, morphological, physiological and cytological characters of chang daeng orchid (Rhynchostylis gigantean var. rubrum Sagarik) in vitro. IJAT, 8 (4): 1451-1460.

Kosonoy-González R, Tapia-Campos E, Barba-Gonzalez R (2019). The importance of mitotic spindle inhibitors in plant breeding. IX International Symposium on New Ornamental Crops, 1288: 175-184.

Leitch IJ, Bennett MD (1997). Polyploidy in angio-sperms. Trends Plant Sci., 2 (12): 470-476.

Loureiro J, Pinto G, Lopes T, Doležel J, Santos C (2005). Assessment of ploidy stability of the somat-ic embryogenesis process in Quercus suber L. using flow cytometry. Planta, 221 (6): 815-822.

Lu M, Zhang P, Wang J, Kang X, Wu J, Wang X, Chen Y (2014). Induction of tetraploidy using high tem-perature exposure during the first zygote division in Populus adenopoda Maxim. Plant Growth Regul., 72 (3): 279-287.

Lundgren MR, Mathers A, Baillie AL, Dunn J, Wilson MJ, Hunt L, Pajor R, Fradera-Soler M, Rolfe S, Os-borne CP (2019). Mesophyll porosity is modulated by the presence of functional stomata. Nat. Com-mun., 10 (1): 1-10.

Mahajan V, Devi A, Khar A, Lawande K (2015). Stud-ies on mutagenesis in garlic using chemical muta-gens to determine lethal dose (LD50) and create variability. Indian J Hortic, 72 (2): 289-292.

Marinho R, Mendes‐Rodrigues C, Bonetti A, Oliveira P (2014). Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae‐Bombacoideae). Plant Biol., 16 (2): 508-511.

Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2007). Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci., 172 (5): 970-977.

Mo L, Chen J, Lou X, Xu Q, Dong R, Tong Z, Huang H, Lin E (2020). Colchicine-induced polyploidy in Rhododendron fortunei Lindl. Plants, 9 (4): 424.

Moghbel N, Borujeni MK, Bernard F (2015). Colchi-cine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Cartha-mus tinctorius L. cultured in vitro. J Genet Eng Bio-technol, 13 (1): 1-6.

Molenaar WS, Schipprack W, Melchinger AE (2018). Nitrous oxide‐induced chromosome doubling of maize haploids. Crop Sci., 58 (2): 650-659.

Pal S, Kumar A, Chaturvedi P, Srivastav R, Tripathi S (2017). Determination of lethal dose for gamma rays induced mutagenesis in different cultivars of dahlia. J. Hill Agric., 8 (3): 279-282.

Pehlivan EC (2020) Asmada (Vitis vinifera L.) kromo-zom katlama uygulamaları ile otopoliploidinin uyarılması ve organogenez. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, 140.

Ramsey J, Schemske DW (2002). Neopolyploidy in flowering plants. Annu. Rev. Ecol. Evol. Syst., 33 (1): 589-639.

Rao S, Kang X, Li J, Chen J, (2019). Induction, identi-fication and characterization of tetraploidy in Lycium ruthenicum. Breed. Sci., 69 (1): 1-9.

Reynolds AG (2015) Grapevine breeding programs for the wine industry. Elsevier, p. 439.

Roy A, Leggett G, Koutoulis A (2001). In vitro tetra-ploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep., 20 (6): 489-495.

Sakhanokho HF, Rajasekaran K, Kelley RY, Islam-Faridi N (2009). Induced polyploidy in diploid or-namental ginger (Hedychium muluense RM Smith) using colchicine and oryzalin. HortScience, 44 (7): 1809-1814.

Soltis D, Soltis P (1993). Molecular data facilitate a reevaluation of traditional tenets of polyploid evo-lution. Crit Rev Plant Sci, 12: 243-273.

Soltis D, Soltis P, Rieseberg LH (1993). Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci, 12 (3): 243-273.

Soltis D, Soltis P (1999). Polyploidy: origins of species and genome evolution. Trends Ecol. Evol, 9: 348-352.

Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004). Recent and recurrent poly-ploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol. J. Linn. Soc., 82 (4): 485-501.

Szarejko I (2012) Haploid mutagenesis, In: Plant mu-tation breeding and biotechnology, Eds, p. 387-410.

Tang Z-Q, Chen D-L, Song Z-J, He Y-C, Cai D-T (2010). In vitro induction and identification of tet-raploid plants of Paulownia tomentosa. PCTOC, 102 (2): 213-220.

Touchell DH, Palmer IE, Ranney TG (2020). In vitro ploidy manipulation for crop improvement. Front. Plant Sci., 11: 722.

Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R, (2011). New horizons for grapevine breeding. MTFB, 5: 79-100.

Väinölä A (2000). Polyploidization and early screening of Rhododendron hybrids. Euphytica, 112 (3): 239-244.

VIVC (2021). https://www.vivc.de/index.php?r=passport-statistic%2Findex, [18.10.2021].

Xie X, Agüero CB, Wang Y, Walker MA (2015). In vitro induction of tetraploids in Vitis × Muscadinia hybrids. PCTOC, 122 (3): 675-683.

Yang X, Cao Z, An L, Wang Y, Fang. (2006). In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinif-era L.). Euphytica, 152 (2): 217-224.

Yazar K (2018). Kolhisin uygulamalarının 'Trakya İlkeren', 'Ekşi Kara' ve 'Gök Üzüm' (Vitis vinifera L.) çeşitlerinde morfolojik ve sitolojik etkileri. Doktora, T.C. Selçuk Üniversitesi Fen Bilimleri En-stitüsü, 80.

Yemets A, Blume YB (2008). Progress in plant poly-ploidization based on antimicrotubular drugs. The Open Horticulture Journal, 1 (1): 15-20.

Yue Y, Zhu Y, Fan X, Hou X, Zhao, Zhang S, Wu J (2017). Generation of octoploid switchgrass in three cultivars by colchicine treatment. Ind Crops Prod, 107: 20-21.

Zakizadeh S, Kaviani B, Hashemabadi D (2020). In vivo-induced polyploidy in Dendrobium ‘Sonia’in a bubble bioreactor system using colchicine and oryzalin. Rev. Bras. Bot., 43 (4): 921-932.

Zeng Q, Liu Z, Du K, Kang X (2019). Oryzalin-induced chromosome doubling in triploid Populus and its effect on plant morphology and anatomy. PCTOC, 138 (3): 571-581.

Zhang L-Y, Guo Q-G, Li X-L, Zeng H, Tan J-M, Liang G-L (2005). Study on the relationship between the number of chloroplast in stomata guard cell and the ploidy of loguat cultivars [J]. Int. J. Fruit Sci., 3 (009): 229-233.

Zhang Q, Luo F, Liu L, Guo F (2010). In vitro induction of tetraploids in crape myrtle (Lagerstroemia indi-ca L.). PCTOC, 101 (1): 41-47.

Zhang Z, Dai H, Xiao M, Liu X (2008). In vitro induc-tion of tetraploids in Phlox subulata L. Euphytica, 159 (1): 59-65.




DOI: https://doi.org/10.15316/SJAFS.2022.031

Refbacks

  • There are currently no refbacks.


Creative Commons Lisansı
Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.