Çiftlik Hayvanlarında CRISPR/Cas9 Uygulamaları

Özge Şebnem Çıldır, Özge Özmen

Abstract


Kümelenmiş düzenli aralıklı kısa palindromik tekrarlar ve bunlar ile ilişkili endonükleaz (CRISPR/Cas) sisteminin 2012 yılında in vitro yeniden yapılandırılmasının ardından genom düzenleme aracı olarak kullanılabileceği düşünülmüştür. Çiftlik hayvanlarında genom düzenleme et, süt, yumurta, yapağı, tiftik, deri gibi verim özelliklerinin geliştirilmesi ve kalitesinin artırılmasında uzun bir süreç isteyen klasik ıslah yöntemlerine bir alternatif olarak düşünülebilir. Kısa vadede verim ve kalite yönünden ilerleme sağlama potansiyeli olan bu tekniğin çiftlik hayvanlarında uygulandığı çalışmaların derlendiği bu yayın, tekniğin tanınması ve hayvancılıkta kullanımına ilişkin bir altyapı oluşturması amacıyla gerekli görülmüştür.

Keywords


CRISPR/Cas9; Genom Düzenleme; Çiftlik Hayvanları

Full Text:

PDF (Türkçe)

References


Abu-Bonsrah, KD et al. (2016). CRISPR/Cas9 Targets Chicken Embriyonic Somatic Cells In Vitro and In Vivo and Generates Phenotypic Abnormalities. Scientific Reports 6: 34524.

Bai Y et al. (2016). Efficient Genome Editing in Chicken DF-1 Cells Using the CRISPR/Cas9 System. G3 Genes Genomes Genetics 6(4): 917-923.

Barrangou R, Van Der Oost J (2013). CRISPR-Cas Systems: RNA-Mediated Adaptive Immunity in Bacteria and Archaea. Springer. Verlag Berlin Heidelberg.

Bevacqua RJ et al. (2016). Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 86 (8): 1886-1896.

Brooks K et al. (2015). Biological Roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 (HSD11B1), HSD11B2, and Glucocorticoid Receptor (NR3C1) in Sheep Conceptus Elongation. Biology of Reproduction 93(2):38, 1–12.

Choi W et al. (2015). Disruption of exogenous eGFP gene using RNA-guided endonuclease in bovine transgenic somatic cells. Zygote 23 (6): 916-923.

Cooper CA et al. (2016). Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenıc Research. DOI: 10.1007/s11248-016-0003-0.

Crispo M et al. (2015). Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One 10(8): e0136690. DOI:10.1371/journal.pone.0136690.

Dimitrov L et al. (2016). Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells. PLoS One 11(4). DOI:10.1371/journal.pone.0154303.

Doudna JA and Charpentier E. (2014). The new frontier of genome engineering with CRISPR-Cas9 Science 346: 1258096. DOI: 10.1126/science.1258096.

Gaj T et al. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31(7): 397-405.

Gao Y et al. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology. 18:13.

Guo RH et al. (2016). Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Scientific Reports 6. DOI: 10.1038/srep29855.

Heo YT et al. (2015). CRISPR/Cas9 Nuclease-Mediated Gene Knock-In in Bovine-Induced Pluripotent Cells. Stem Cells and Development 24(3): 393-402.

Ishino Y el al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli , and identification of the gene product. Journal of Bacteriology. 169:5429–5433.

Jinek, M. et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

Kim JS. (2016). Genome editing comes of age. Nature Protocols 11(9): 1573-1578.

Mojica FJ et.al. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution. 60: 174–182.

Ni W et al. (2014). Efficient Gene Knockout in Goats Using CRISPR/Cas9 System. PLoS One 9(9): e106718. DOI: 10.1371/journal.pone.0106718.

Niu Y et al. (2016). Biallelic beta-carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9. Animal Genetics. DOI: 10.1111/age.12515.

O'Geen H et al. (2015). How specific is CRISPR/Cas9 really? Current Opinion in Chemical Biology 29: 72-78.

Oishi I et al. (2016). Targeted mutagenesis in chicken using CRISPR/Cas9 system. Scientific Reports 6. DOI: 10.1038/srep23980.

Petersen B and Niemann H. (2015). Molecular scissors and their application in genetically modified farm animals. Transgenic Research 24(3): 381-396.

Pourcel C et al. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 151:653–663.

Proudfoot C et al. (2015). Genome edited sheep and cattle. Transgenic Research. 24(1): 147-153.

Véron N et al. (2015). CRISPR mediated somatic cell genome engineering in the chicken. Developmental Biology. 407(1): 68-74.

Wang X et al. (2015). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports 5: 13878. DOI: 10.1038/srep13878

Wang XL et al. (2016a). Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers. PLoS One 11(10). DOI: 10.1371/journal.pone.0164640.

Wang XL et al. (2016b). Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Scientific Reports 6. DOI: 10.1038/srep32271.

Wang L et al. (2017). Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System. PLoS ONE 12(1): e0169768. doi:10.1371/journal.pone.0169768

Westra ER et al. (2014). CRISPR-Cas systems: beyond adaptive immunity. Nature Reviews Microbiology 12:317–326.

Wiedenheft B et al. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482:331–338.

Wu, M. et al. (2016). Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Scientific. Reports. 6: 24360; DOI: 10.1038/srep24360.

Zhang X et al. (2017). Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos. Theriogenology. 91: 163-172.

Zhang Y et al. (2017). CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS ONE. 12(2): e0172207. DOI:10.1371/journal.pone.0172207.

Zuo QS et al. (2016). Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology. G3 Genes Genomes Genetics 6(6): 1787-1792.




DOI: https://doi.org/10.15316/SJAFS.2018.137

Refbacks

  • There are currently no refbacks.


Creative Commons Lisansı
Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.