Determination of Resistance Levels of Selected Tomato Genotypes to Meloidogyne incognita, Tomato Yellow Leaf Curling Virus (TYLCV) Verticillium Wilt, Fusarium oxysporum radicis, Fusarium Wilt, Tomato Spotted Wilt Virus (TSWV)

Gülbanu Kıymacı, Banu Çiçek Arı, Ali Tevfik Uncu, Ayşe Özgür Uncu, Neslihan Issı, Önder Türkmen

Abstract


Tomato is one of the most cultivated vegetables in the world. In this context, intensive tomato breeding studies are carried out around the world and new cultivars are emerging every day, which leads to great competition. In particular, resistance or tolerance levelstolerance levels to some important diseases and pests are considered important in cultivar breeding and in determining the commercial value of cultivars. In this context, the determination of resistance levels to 70 tomatoes, Meloidogyne incognita, Tomato Yellow leaf curling virus (Tylcv), Verticillium wilt, Fusarium oxysporum radicis, Tomato spotted wilt virus (TSWV), Fusarium Wilt, which have the potential to become parent lines at S8 level due to their agro-morphological characteristics formed the subject of this study. When the results of the study are examined, tomato genotypes showed resistance/sensitive levels according to combinations of alleles as 58 genotypes of RR (homozygous resistant), 10 Rr (heterozygous), 2 rr(sensitive) to Meloidogyne incognita, 45 RR (homozygous resistant), 15 Rr (heterozygous),10 rr (sensitive)to Verticillium dahliae, 10 to, 52 RR (homozygous resistant), 13 Rr (heterozygous), 5 rr (sensitive) to Tomato Spotted Wilt Virus,46 RR (homozygous resistant) 18 Rr (heterozygous), 6 rr (sensitive) to Tomato Yellow leaf Curl Virus, Fusarium oxysporum (Fusarium wilt) 49 RR (homozygous resistant), 13 Rr (heterozygous), 8 rr (sensitive), Fusarium oxysporum radicis (Frl) 52 Their resistances were determined as RR (homozygous resistant), 12 Rr (heterozygous), 6 rr (sensitive).


Keywords


Domates Meloidogyne incognita Verticillium dahlia Tomato Spotted Wilt Virus Tomato Yellow leaf Curl Virus Fusarium oxysporum (Fusarium wilt)

Full Text:

PDF

References


Acciarri N, Rotino GL, Tamietti G, Valentino D, Voltattorni S and Sabatini E (2007). Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breeding 126(6): 617-621.

Ates C, Fidan H, Karacaoglu M, Dasgan H (2019). The identification of the resistance levels of Fusarium oxysporum f. sp. radicis-lycopersici and Tomato Yellow Leaf Curl viruses in different tomato genotypes with traditional and molecular methods, Applied Ecology and Environmental Research 17(2): 2203-2218.

Aydın G, Aktaş H (2022). Determination of The Response of Wild and Cultivated Tomato Genotypes to Some Disease and Pests by Molecular Markers, Horticultural Studies 15-20.

Barbieri, M., Acciarri, N., Sabatini, E., Sardo, L., Accotto, G.P., Pecchioni, N (2010). Introgression of resistance to two Mediterranean virus species causing tomato yellow leaf curl into a valuable traditional tomato variety. Journal of Plant Pathology 485-493.

Basım H, Kandil O, İğdirli R, Mehmet M (2022). The Resistance of Some Tomato Lines against Tomato Spotted Wild Virus, Tomato Yellow Leaf Curl Virus and Root Knot Nematodes (meloidogyne spp.) by Molecular Markers. Black Sea Journal of Agriculture: 1-2.

Bozbuga R, Dasgan HY, AkhoundnejadY, ImrenM, Günay OC, Toktay H (2020). Effect of Mi gene and nematode resistance on tomato genotypes using molecular and screening assay, Cytology and Genetics 54: 154-164.

Cucu MA, Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts, Biological Control 142: 104158.

Dianese EC, de Fonseca MEN, Goldbach R, Kormelink R, Inoue-Nagata AK, Resende RO, Boiteux LS (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions, Molecular Breeding 25 (1): 133-142.

Erkan D (2020a).Bazı Yabani Domates Türlerinin Önemli Domates Virüslerine Dayanıklılıkla İlişkili Moleküler Markörler Yardmıyla Taranması, Isparta Uygulamal Bilimler Üniversitesi. Lisansüstü Eğitim Enstitüsü.Yüksek Lisans Tezi. Tarımsal Biyoteknoloji Anabilim Dalı. 86s.

Erkan D (2020b). Bazı Yabani Domates Türlerinin Önemli Domates Virüslerine Dayanıklılıkla İlişkili Moleküler Markörler Yardmıyla Taranması, Isparta Uygulamal Bilimler Üniversitesi, Lİsansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi. Tarımsal Biyoteknoloji Anabilim Dalı. 86s.

Garcia B E, Mejía L, Salus MS, Martin CT, Seah S, Williamson VM, Maxwell DP (2007). A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm.53706, 1-13.

Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, Sim SC, Smith H, Hutton SF (2019). Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus, Theoretical and Applied Genetics 132 (5): 1543-1554.

Grube RC, Radwanski ER, Jahn M (2000). Comparative genetics of disease resistance within the Solanaceae, Genetics 155 (2): 873-887.

Hull R (2009). Comparative plant virology, Academic press, p. Norwich, UK.

Ji Y, Schuster DJ, Scott JW (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato, Molecular Breeding 20 (3): 271-284.

Jones RA (2006). Control of plant virus diseases, Advances in Virus Research 67: 205-244.

Kabaş A, Fidan H, Demirelli MB (2021). Identification of new sources of resistance to resistance-breaking isolates of tomato spotted wilt virus, Saudi Journal of Biological Sciences 28 (5): 3094-3099.

Kim, M., Park, Y., Lee, J., Sim, SC (2020). Development of molecular markers for Ty-2 and Ty-3 selection in tomato breeding. Scientia Horticulturae 265: Article109230.

Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R,Howard RJ (2001).Tomato Ve disease resistance genes encode cell surface-like receptors, Proceedings of the National Academy of Sciences 98 (11): 6511-6515.

Klee HJ, Giovannoni JJ (2011).Genetics and control of tomato fruit ripening and quality attributes, Annual review of genetics 45: 41-59.

Lizardo RCM, Pinili MS, Diaz MGQ, Cumagun CJR (2022). Screening for Resistance in Selected Tomato Varieties against the Root-Knot Nematode Meloidogyne incognita in the Philippines Using a Molecular Marker and Biochemical Analysis, Plants 11(10): 1354.

Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes, The Plant Cell 10(8): 1307-1319.

Mutlu N, Demirelli A, Ilbi H, Ikten C (2015).Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici, Theoretical and Applied Genetics 128(9): 1791-1798.

Qi S, Shen Y, Wang X, Zhang S, Li Y, Islam M, Wang J, Zhao P, Zhan X, Zhang F (2022). A new NLR gene for resistance to tomato spotted wilt virus in tomato (Solanum lycopersicum), Theoretical and Applied Genetics 135(5): 1493-1509.

Roberts P. McGovern R, Datnoff L(2000). Fusarium crown and root rot of tomato in Florida, Plant Pathology Fact Sheet 184: 1-4.

Shirasawa K., Asamizu, E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T,Kishida Y (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato, Theoretical and Applied Genetics 121(4): 731-739.

Smith, PG (1944). Embcryo culture of a tomato species hybrid, Proc. Amer. Soc. Hort. Sci 413-416.

Song Y, Zhang Z, Seidl MF, Majer A, Jakse J, Javornik B, Thomma BP (2017). Broad taxonomic characterization of Verticillium wilt resistancegenes reveals an ancient origin of the tomato Ve1 immune receptor, Molecular plant pathology 18(2): 195-209.

Staniaszek M, Kozik E, Marczewski W (2007). A CAPS marker TAO1902 diagnostic for the I‐2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato, Plant Breeding 126(3): 331-333.

Stevens M, Scott S, Gergerich R (1991). Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59(1): 9-17.

Yang X, Caro M, Hutton S F, Scott JW, Guo Y, Wang X, Rashid MH, Szinay D, de Jong H, Visser RG (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding 34(2): 749-760.

Zhang J, Panthee DR (2021). Development of codominant SCAR markers to detect the Pto, Tm22, I3 and Sw5 genes in tomato (Solanum lycopersicum). Plant Breeding 140 (2): 342-348.




DOI: https://doi.org/10.15316/SJAFS.2023.010

Refbacks

  • There are currently no refbacks.


Creative Commons Lisansı
Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.