Importance of Priming Application Times on Growth, Relative Water Content and Photosynthetic Pigments of Rapeseed (Brassica napus ssp. oleifera L.) Cultivars Under Salinity Stress

Mehtap Gürsoy

Abstract


Environmental stress factors affect plant production more and more every day. One of these stress factors is salinity. The use of biostimulants is increasing day by day and gaining importance in order to reduce the effects of stress factors and increase the yield and quality in plant production. Chitosan (Ch) is one of the biostimulants whose use in agriculture is increasing day by day. Seeds of rapeseed cultivars were used in this study, and it is an important oil plant. In this study, the times of priming applications with Ch (3 times) [0 (control) (Ch1), 12 hour (Ch2), 24 hour (Ch3)] and different doses of salt stress (S) [0 (control) (S1), 50 mM L-1 (S2), 100mM L-1 (S3)] in rapeseed cultivars (NK Caravel (C1), Elvis (C2), Champlain (C3) under laboratory conditions were investigated. Germination percentage (GP), seedling length (SL), root length (RL), seedling fresh weight (SFW), root fresh weight (RFW), relative water content (RWC), total chlorophyll (Total Chl), carotenoid (Crt) parameters were examined. As a result of the research, with Ch applications, GP (84.67% to 86.67), SL (7.83 cm to 8.12), RL (6.42 cm to 6.50), SFW (0.10 g to 0.53), RFW ( 0.02 g to 0.06), RWC (62.84% to 63.30), Total Chl (1.60 mg g-1 to 1.90), and Crt (1.60 mg g-1 to 1.89) has increased. It has been determined that Ch application times play an important role in reducing salt stress in the investigated parameters.

Keywords


Carotenoid; Chitosan; Chlorophyll; Germination; Time of priming application

Full Text:

PDF

References


Abdelaal K, Attia KA, Niedbała G, Wojciechowski T, Hafez Y, Alamery S, Alateeq TK, Arafa SA (2021). Mitigation of Drought Damages by Exogenous Chi-tosan and Yeast Extract with Modulating the Pho-tosynthetic Pigments, Antioxidant Defense System and Improving the Productivity of Garlic Plants. Horticulturae 7, 510. https://doi.org/10.3390/ hor-ticulturae7110510.

Ahmed KBM, Khan MMA, Siddiqui H, Jahan A (2020). Chitosan and its oligosaccharides, a promi-sing option for sustainable crop production- a re-view. Carbohydrate Polymers 227: 115331. https://doi.org/10.1016/j.carbpol.2019.115331.

Ali AYA, Ibrahim MEH, Zhou G, Nimir NEA, Jiao X, Zhu G, Elsiddig AMI, Suliman MSE, Elradi SBM, Yue W (2020). Exogenous jasmonic acid and hu-mic acid increased salinity tolerance of sorghum. Agronomy Journal 112:871–884.https://doi.org/10.1002/agj2.20072

Arslan B, Culpan E (2022). Innovative Agricultural Practises in Soil, Plant and Environment. Kolza (Kanola) Yetiştiriciliği ve Islah Amaçları. Chap-ter:14 437-458. ISBN: 978-625-8377-02-6, İksad Yayınevi.

Bakhoum GS, Sadak MS, Badr EAEM (2020). Mitiga-tion of adverse effects of salinity stress on sunflo- wer plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre 44(1):1-11. https://doi.org/10.1186/ s42269-020-00343-7.

Chouhan D, Mandal P (2021). Applications of chi-tosan and chitosan based metallic nanoparticles in agrosciences-A review. Int J Biol Macrolmol. https://doi.org/10.1016/j.ijbiomac.2020.11.035.

Elsiddig AMI, Zhou G, Nimir NEA, Ali AYA (2022). Effect of exogenous ascorbic acid on two sorghum varieties under different types of salt stress. Chi-lean Journal of Agricultural Research 82(1):10-20. doi:10.4067/S0718-58392022000100010

Gerami M, Majidian P, Ghorbanpour A, Alipour Z (2020). Stevia rebaudiana bertoni responses to salt stress and chitosan elicitor. Physiology and Mole-cular Biology of Plants 26(5): 965–974. https://doi.org/10.1007/s12298-020-00788-0.

Guan Y, Hu J, Wang X, Shao C (2009). Seed priming with chitosan improves maize germination and se-edling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427-433.

Gürsoy M, Kolsarıcı Ö (2017). Effects of Different Humic Acid Doses in Leonardite Environment on the Oil Percentage and Fatty Acids of Summer Ra-peseed (Brassica napus ssp. oleifera L.) under Central Anatolian Conditions. Fresenius Environ-mental Bulletin 26(11):6447-6456.

Gürsoy M (2019). Importance of some oil crops in human nutrition. Turkish Journal of Agriculture-Food Science and Technology 7(12): 2154-2158. Doi:https://doi.org/10.24925/turjaf.v7i12.2154-2158.2916

Gürsoy M (2020). Effect of chitosan pretreatment on seedling growth and antioxidant enzyme activity of safflower (Carthamus tinctorius L.) cultivars under saline conditions. Applied Ecology and Environ-mental Research 18(5):6589-6603. Doi: http://dx.doi.org/10.15666/aeer/1805_65896603.

Gursoy M (2022a). Effect of foliar aminopolysaccha-ride chitosan applications under saline conditions on seedling growth characteristics antioxidant enzyme activity, chlorophyll and carotenoid con-tents of safflower (Carthamus tinctorius L.) culti-vars. Pak. J. Bot., 54(5): DOI: http://dx.doi.org/10.30848/PJB2022-5(15).

Gürsoy (2022b). Biostimulant Applications in Agricul-ture. 7th International Zeugma Conference on Sci-entific Researches Congress. January 21-23 2022, Gaziantep/Turkey, The Book of Full Papers pp:41-47.

Hajihashemi S, Kazemi S (2022). The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse efect of salinity in the wheat plant. BMC Plant Biology 22:148, 1-15. https://doi.org/10.1186/s12870-022-03531-x.

Hameed A, Sheikh MA, Farooq T, Basra S, Jamil A (2013). Chitosan priming enhances the seed germi-nation, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica-Pisa 57(2): 97-110.

Harfoush EA, Abdel-Razzek AH, El-Adgham FI, El-Sharkawy AM (2017). Effects of Humic Acid and Chitosan under Different Levels of Nitrogen and Potassium Fertilizers on Growth and Yield Potential of Potato Plants (Solanum tuberosum L.). Alex. J. Agric. Sci. 62(1): 135‐148.

Hasanah Y, Sembiring M (2018). Effect of foliar app-lication of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) cultivars. IOP Conf.Ser:Earth Environ.Sci. 122 012027. Doi: 10.1088/1755-1315/122/1/012027

Iqbal S, Basra SM, Afzal I, Wahid A, Saddiq MS, Ha-feez MB, Jacobsen SE (2019). Yield potential and salt tolerance of quinoa on salt‐degraded soils of Pakistan. J Agron Crop Sci. 205(1): 13-21. https://doi.org/10.1111/jac.12290.

ISTA (2003). International rules for seed testing. ınter-national seed testing association, Bassersdorf, Swit-zerland.

Jabeen N, Ahmad R (2013). The activity of antioxi-dant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Heliant-hus annuus L.) seedlings raised from seed treated with chitosan. J. Sci. Food Agric. 93, 1699–1705.

Lal SK, Kumar S, Sheri V, Mehta S, Varakumar P, Ram B, Borphukan B, James D, Fartyal D, Reddy MK (2018). Advances in Seed Priming. Seed Pri-ming: An Emerging Technology to Impart Abiotic Stress Tolerance in Crop Plants. Chapter3:41-50. https://doi.org/10.1007/978-981-13-0032-5_3.

Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Huang L, Yan Y (2017). Metabolic pathways regu-lated by chitosan contributing to drought resistance in white clover. J. Proteome Res. 16: 3039–3052.

Lichtenthaler HK, Wellburn AR (1983). Determinations of total careteonids and chlorophylls a and b of leaf extracts in different solvents. Biomchem. Soc. Transac., 11: 591-592.

Mahdavi B, Modarres SS, Aghaalikhani M, Sharifi M, Dolatabadian A (2011). Chitosan İmproves Osmo-tic Potential Tolerance in Safflower (Carthamus tinctorius L.) Seedlings. J Crop Improve 25(6): 728-741.

Mazrou R, Ali EF, Hassan S, Hassan FAS (2021). A Pivotal Role of Chitosan Nanoparticles in Enhan-cing the Essential Oil Productivity and Antioxidant Capacity in Matricaria chamomilla L.. Horticultu-rae 7, 574. https:// doi.org/10.3390/horticulturae7120574.

Mushtaq Z, Faizan S, Gulzar B, Mushtaq H, Bushra S, Hussain A, Hakeem KR (2021). Changes in Growth, Photosynthetic Pigments, Cell Viability, Li-pid Peroxidationand Antioxidant Defense System in Two Varieties of Chickpea (Cicer arietinumL.) Subjected to Salinity Stress. Phyton – International Journal of Experimental Botany DOI: 10.32604/phyton.2021.016231.

Palve S, Ahire D, Gahile Y (2022). Salicylic acid pre-treatment effects on Beta vulgaris L. multigerm germination and germination indices. International Journal of Biosciences. 20(1): 59-71.

Pongprayoon W, Roytrakul S, Pichayangkura R, Chadchawan S (2013). The role of hydrogen pe-roxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul. 70: 159–173.

Ritchie SW, Nguyen HT, Haloday AS (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science 30: 105-111.

Safikhan S, Khoshbakht K, Chaichi MR, Moteshare-zadeh AAB (2018). Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.)in a pot experiment. – Journal of Applied Research on Me-dicinal and Aromatic Plants 10: 49-58. DOI:10.1016/j.jarmap.2018.06.002.

Sen SK, Mandal P (2016). Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. Jo-urnal of Central European Agriculture, 17(3): 749–762. DOI: 10.5513/JCEA01/17.3.1773.

Seraj RGM, Behnamian M, Ahmadikhah A, Shariati V, Dezhsetan S (2021). Chitosan and salicylic acid regulate morpho physiologicaland phytochemical parameters and improve water deficit toleran-cein milk thistle (Silybum marianum L.). Acta Phy-siologiae Plantarum 43:101https://doi.org/10.1007/s11738-021-03264-8.

Sheikha SA, Al-Malki FM (2011). Growth and chlo-rophyll responses of bean plants to the chitosan applications. European Journal of Scientific Rese-arch 50(1): 124-134.

Siddiqi E, Ashraf M, Aisha AN (2007). Variation in seed germination and seedling growth in some di-verse line of safflower (Carthamus tinctorius L.) under salt stress. Pak J Bot., 39: 1937-1944.

Zahra N, Mahmood S, Raza ZA (2018). Salinity stress on various physiological and biochemical attributes of two distinct maize (Zea mays L.) genotypes. J Plant Nutr. 41(11): 1368-80.

Zayed MM, Elkafafi SH, Zedan AMG, Dawoud SFM (2017). Effect of Nano chitosan on growth, physio-logical and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Produc-tion, 8(5): 577–585. https://doi.org/10.21608/ jpp.2017.40468.

Zhang G, Wang Y, Wu K, Zhang Q, Feng Y, Miao Y, Yan Z (2021). Exogenous Application of Chitosan Alleviate Salinity Stress in Lettuce (Lactuca sativa L.). Horticulturae 7, 342. https://doi.org/10.3390/horticulturae7100342.

Zhang M, Zhang F, Li C, An H, Wan T, Zhang P (2022). Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture. Polymers, 14, 958. https://doi.org/10.3390/polym14050958.




DOI: https://doi.org/10.15316/SJAFS.2022.044

Refbacks

  • There are currently no refbacks.


Creative Commons Lisansı
Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.